Molecular characterization of the nitrite-reducing system of Staphylococcus carnosus.

نویسندگان

  • H Neubauer
  • I Pantel
  • F Götz
چکیده

Characterization of a nitrite reductase-negative Staphylococcus carnosus Tn917 mutant led to the identification of the nir operon, which encodes NirBD, the dissimilatory NADH-dependent nitrite reductase; SirA, the putative oxidase and chelatase, and SirB, the uroporphyrinogen III methylase, both of which are necessary for biosynthesis of the siroheme prosthetic group; and NirR, which revealed no convincing similarity to proteins with known functions. We suggest that NirR is essential for nir promoter activity. In the absence of NirR, a weak promoter upstream of sirA seems to drive transcription of sirA, nirB, nirD, and sirB in the stationary-growth phase. In primer extension experiments one predominant and several weaker transcription start sites were identified in the nir promoter region. Northern blot analyses indicated that anaerobiosis and nitrite are induction factors of the nir operon: cells grown aerobically with nitrite revealed small amounts of full-length transcript whereas cells grown anaerobically with or without nitrite showed large amounts of full-length transcript. Although a transcript is detectable, no nitrite reduction occurs in cells grown aerobically with nitrite, indicating an additional oxygen-controlled step at the level of translation, enzyme folding, assembly, or insertion of prosthetic groups. The nitrite-reducing activity expressed during anaerobiosis is switched off reversibly when the oxygen tension increases, most likely due to competition for electrons with the aerobic respiratory chain. Another gene, nirC, is located upstream of the nir operon. nirC encodes a putative integral membrane-spanning protein of unknown function. A nirC mutant showed no distinct phenotype.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiology and interaction of nitrate and nitrite reduction in Staphylococcus carnosus.

Staphylococcus carnosus reduces nitrate to ammonia in two steps. (i) Nitrate was taken up and reduced to nitrite, and nitrite was subsequently excreted. (ii) After depletion of nitrate, the accumulated nitrite was imported and reduced to ammonia, which again accumulated in the medium. The localization, energy gain, and induction of the nitrate and nitrite reductases in S. carnosus were characte...

متن کامل

The nitrate reductase and nitrite reductase operons and the narT gene of Staphylococcus carnosus are positively controlled by the novel two-component system NreBC.

In Staphylococcus carnosus, the nreABC (for nitrogen regulation) genes were identified and shown to link the nitrate reductase operon (narGHJI) and the putative nitrate transporter gene narT. An nreABC deletion mutant, m1, was dramatically affected in nitrate and nitrite reduction and growth. Transcription of narT, narGHJI, and the nitrite reductase (nir) operon was severely reduced even when c...

متن کامل

Complex genomic and phenotypic characterization of the related species Staphylococcus carnosus and Staphylococcus piscifermentans.

On the basis of numerical analysis of 100 phenotypic features, the strains of two species, Staphylococcus carnosus and Staphylococcus piscifermentans, were differentiated into two separate phenons corresponding with the macrorestriction patterns of their genomic DNA, as well as with the results of ribotyping and PCR amplification of enterobacterial repetitive intergenic consensus sequences. One...

متن کامل

Antimicrobial activity and characterization of biosynthesized silver nanoparticles from Anisochilus carnosus

Silver nanoparticles with size of 6- 57nm were synthesized by bioreduction method from Anisochilus carnosus aqueous and ethanolic extract. Biosynthesized nanoparticles showed maximum antimicrobial activity against K. pneumonia (13±1.67mm), E.coli (13±1.97mm) and B. subtilis (13±1.07mm) followed by P. aeruginosa and minimum against <...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 181 5  شماره 

صفحات  -

تاریخ انتشار 1999